{ localUrl: '../page/image_of_group_under_homomorphism_is_subgroup.html', arbitalUrl: 'https://arbital.com/p/image_of_group_under_homomorphism_is_subgroup', rawJsonUrl: '../raw/4b4.json', likeableId: '0', likeableType: 'page', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], pageId: 'image_of_group_under_homomorphism_is_subgroup', edit: '1', editSummary: '', prevEdit: '0', currentEdit: '1', wasPublished: 'true', type: 'wiki', title: 'The image of a group under a homomorphism is a subgroup of the codomain', clickbait: 'Group homomorphisms take groups to groups, but it is additionally guaranteed that the elements they hit form a group.', textLength: '903', alias: 'image_of_group_under_homomorphism_is_subgroup', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-06-14 19:30:27', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-06-14 19:30:27', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '16', text: 'Let $f: G \\to H$ be a [-47t], and write $f(G)$ for the set $\\{ f(g) : g \\in G \\}$.\nThen $f(G)$ is a group under the operation inherited from $H$.\n\n# Proof\n\nTo prove this, we must verify the group axioms.\nLet $f: G \\to H$ be a group homomorphism, and let $e_G, e_H$ be the identities of $G$ and of $H$ respectively.\nWrite $f(G)$ for the image of $G$.\n\nThen $f(G)$ is closed under the operation of $H$: since $f(g) f(h) = f(gh)$, so the result of $H$-multiplying two elements of $f(G)$ is also in $f(G)$.\n\n$e_H$ is the identity for $f(G)$: it is $f(e_G)$, so it does lie in the image, while it acts as the identity because $f(e_G) f(g) = f(e_G g) = f(g)$, and likewise for multiplication on the right.\n\nInverses exist, by "the inverse of the image is the image of the inverse".\n\nThe operation remains associative: this is inherited from $H$.\n\nTherefore, $f(G)$ is a group, and indeed is a subgroup of $H$.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens' ], childIds: [], parentIds: [ 'group_homomorphism' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '3902', parentId: 'group_homomorphism', childId: 'image_of_group_under_homomorphism_is_subgroup', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-06-17 21:58:56', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12765', pageId: 'image_of_group_under_homomorphism_is_subgroup', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-06-14 19:30:27', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12762', pageId: 'image_of_group_under_homomorphism_is_subgroup', userId: 'PatrickStevens', edit: '1', type: 'newRequirement', createdAt: '2016-06-14 19:27:50', auxPageId: 'group_homomorphism', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12761', pageId: 'image_of_group_under_homomorphism_is_subgroup', userId: 'PatrickStevens', edit: '1', type: 'newParent', createdAt: '2016-06-14 19:26:56', auxPageId: 'group_homomorphism', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }