{
  localUrl: '../page/group_homomorphism.html',
  arbitalUrl: 'https://arbital.com/p/group_homomorphism',
  rawJsonUrl: '../raw/47t.json',
  likeableId: '2657',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'EricBruylant',
    'JaimeSevillaMolina'
  ],
  pageId: 'group_homomorphism',
  edit: '8',
  editSummary: '',
  prevEdit: '6',
  currentEdit: '8',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Group homomorphism',
  clickbait: 'A group homomorphism is a "function between groups" that "respects the group structure".',
  textLength: '3004',
  alias: 'group_homomorphism',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'EricBruylant',
  editCreatedAt: '2016-06-22 18:47:46',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-13 12:26:33',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '72',
  text: '[summary: A group homomorphism is a function between [3gd groups] which "respects the group structure".]\n\n[summary(Technical): Formally, given two groups $(G, +)$ and $(H, *)$ (which hereafter we will abbreviate as $G$ and $H$ respectively), a group homomorphism from $G$ to $H$ is a [-3jy] $f$ from the underlying set $G$ to the underlying set $H$, such that $f(a) * f(b) = f(a+b)$ for all $a, b \\in G$.]\n\nA group homomorphism is a function between [3gd groups] which "respects the group structure".\n\n#Definition\n\nFormally, given two groups $(G, +)$ and $(H, *)$ (which hereafter we will abbreviate as $G$ and $H$ respectively), a group homomorphism from $G$ to $H$ is a [-3jy] $f$ from the underlying set $G$ to the underlying set $H$, such that $f(a) * f(b) = f(a+b)$ for all $a, b \\in G$.\n\n#Examples\n\n - For any group $G$, there is a group homomorphism $1_G: G \\to G$, given by $1_G(g) = g$ for all $g \\in G$. This homomorphism is always [499 bijective].\n - For any group $G$, there is a (unique) group homomorphism into the group $\\{ e \\}$ with one element and the only possible group operation $e * e = e$. This homomorphism is given by $g \\mapsto e$ for all $g \\in G$. This homomorphism is usually not [4b7 injective]: it is injective if and only if $G$ is the group with one element. (Uniqueness is guaranteed because there is only one *function*, let alone group homomorphism, from any set $X$ to a set with one element.)\n - For any group $G$, there is a (unique) group homomorphism from the group with one element into $G$, given by $e \\mapsto e_G$, the identity of $G$. This homomorphism is usually not [4bg surjective]: it is surjective if and only if $G$ is the group with one element. (Uniqueness is guaranteed this time by the property proved below that the identity gets mapped to the identity.)\n - For any group $(G, +)$, there is a bijective group homomorphism to another group $G^{\\mathrm{op}}$ given by taking inverses: $g \\mapsto g^{-1}$. The group $G^{\\mathrm{op}}$ is defined to have underlying set equal to that of $G$, and group operation $g +_{\\mathrm{op}} h := h + g$.\n - For any pair of groups $G, H$, there is a homomorphism between $G$ and $H$ given by $g \\mapsto e_H$.\n - There is only one homomorphism between the group $C_2 = \\{ e_{C_2}, g \\}$ with two elements and the group $C_3 = \\{e_{C_3}, h, h^2 \\}$ with three elements; it is given by $e_{C_2} \\mapsto e_{C_3}, g \\mapsto e_{C_3}$. For example, the function $f: C_2 \\to C_3$ given by $e_{C_2} \\mapsto e_{C_3}, g \\mapsto h$ is *not* a group homomorphism, because if it were, then $e_{C_3} = f(e_{C_2}) = f(gg) = f(g) f(g) = h h = h^2$, which is not true. (We have used that the identity gets mapped to the identity.)\n\n# Properties\n\n- The identity gets mapped to the identity. ([49z Proof.])\n- The inverse of the image is the image of the inverse. ([4b1 Proof.])\n- The [3lh image] of a group under a homomorphism is another group. ([4b4 Proof.])\n- The composition of two homomorphisms is a homomorphism. ([4b6 Proof.])',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'EricBruylant',
    'PatrickStevens'
  ],
  childIds: [
    'kernel_of_group_homomorphism',
    'image_of_identity_under_group_homomorphism',
    'group_homomorphism_image_of_inverse',
    'image_of_group_under_homomorphism_is_subgroup',
    'composition_of_group_homomorphisms_is_homomorphism'
  ],
  parentIds: [
    'group_mathematics'
  ],
  commentIds: [
    '47w'
  ],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '3823',
      parentId: 'function',
      childId: 'group_homomorphism',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '3882',
      parentId: 'group_mathematics',
      childId: 'group_homomorphism',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14413',
      pageId: 'group_homomorphism',
      userId: 'EricBruylant',
      edit: '8',
      type: 'newEdit',
      createdAt: '2016-06-22 18:47:46',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14406',
      pageId: 'group_homomorphism',
      userId: 'EricBruylant',
      edit: '6',
      type: 'revertEdit',
      createdAt: '2016-06-22 18:28:33',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14405',
      pageId: 'group_homomorphism',
      userId: 'EricBruylant',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-06-22 18:27:21',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13510',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '6',
      type: 'newRequiredBy',
      createdAt: '2016-06-17 14:13:38',
      auxPageId: 'sign_homomorphism_symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13495',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '6',
      type: 'newRequiredBy',
      createdAt: '2016-06-17 13:42:02',
      auxPageId: 'sign_of_permutation_is_well_defined',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12783',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-06-14 19:41:58',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12778',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-06-14 19:39:12',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12773',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newChild',
      createdAt: '2016-06-14 19:39:06',
      auxPageId: 'composition_of_group_homomorphisms_is_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12774',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newRequiredBy',
      createdAt: '2016-06-14 19:39:06',
      auxPageId: 'composition_of_group_homomorphisms_is_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12767',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newChild',
      createdAt: '2016-06-14 19:36:09',
      auxPageId: 'kernel_of_group_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12768',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newRequiredBy',
      createdAt: '2016-06-14 19:36:09',
      auxPageId: 'kernel_of_group_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12763',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newChild',
      createdAt: '2016-06-14 19:30:27',
      auxPageId: 'image_of_group_under_homomorphism_is_subgroup',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12764',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newRequiredBy',
      createdAt: '2016-06-14 19:30:27',
      auxPageId: 'image_of_group_under_homomorphism_is_subgroup',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12757',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newChild',
      createdAt: '2016-06-14 19:25:30',
      auxPageId: 'group_homomorphism_image_of_inverse',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12758',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newRequiredBy',
      createdAt: '2016-06-14 19:25:30',
      auxPageId: 'group_homomorphism_image_of_inverse',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12748',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newChild',
      createdAt: '2016-06-14 19:21:36',
      auxPageId: 'image_of_identity_under_group_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12750',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newRequiredBy',
      createdAt: '2016-06-14 19:21:36',
      auxPageId: 'image_of_identity_under_group_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12730',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newRequiredBy',
      createdAt: '2016-06-14 19:09:29',
      auxPageId: 'group_isomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12716',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newRequirement',
      createdAt: '2016-06-14 18:50:49',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12649',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newRequiredBy',
      createdAt: '2016-06-14 15:47:25',
      auxPageId: 'group_action_induces_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12617',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-06-14 11:52:42',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '2665',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '12552',
      pageId: 'group_homomorphism',
      userId: 'EricBruylant',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-13 16:35:02',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12551',
      pageId: 'group_homomorphism',
      userId: 'EricBruylant',
      edit: '2',
      type: 'newTag',
      createdAt: '2016-06-13 16:34:04',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12539',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-13 14:45:27',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12536',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteRequirement',
      createdAt: '2016-06-13 12:37:27',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12534',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-13 12:37:26',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12532',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-13 12:37:09',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12530',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-13 12:36:59',
      auxPageId: 'function',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12528',
      pageId: 'group_homomorphism',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-13 12:26:33',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}