{
  localUrl: '../page/sign_of_permutation_is_well_defined.html',
  arbitalUrl: 'https://arbital.com/p/sign_of_permutation_is_well_defined',
  rawJsonUrl: '../raw/4hh.json',
  likeableId: '2736',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'sign_of_permutation_is_well_defined',
  edit: '3',
  editSummary: '',
  prevEdit: '2',
  currentEdit: '3',
  wasPublished: 'true',
  type: 'wiki',
  title: 'The sign of a permutation is well-defined',
  clickbait: 'This result is what allows the alternating group to exist.',
  textLength: '2315',
  alias: 'sign_of_permutation_is_well_defined',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-28 14:14:29',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-17 13:42:02',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '32',
  text: 'The [-497] $S_n$ contains elements which are made up from [4cn transpositions] ([4cp proof]).\nIt is a fact that if $\\sigma \\in S_n$ can be made by multiplying together an even number of transpositions, then it cannot be made by multiplying an odd number of transpositions, and vice versa.\n\n%%%knows-requisite([47y]):\nEquivalently, there is a [-47t] from $S_n$ to the [-47y] $C_2 = \\{0,1\\}$, taking the value $0$ on those permutations which are made from an even number of permutations and $1$ on those which are made from an odd number.\n%%%\n\n# Proof\n\nLet $c(\\sigma)$ be the number of cycles in the [49f disjoint cycle decomposition] of $\\sigma \\in S_n$, including singletons.\nFor example, $c$ applied to the identity yields $n$, while $c((12)) = n-1$ because $(12)$ is shorthand for $(12)(3)(4)\\dots(n-1)(n)$.\nWe claim that multiplying $\\sigma$ by a transposition either increases $c(\\sigma)$ by $1$, or decreases it by $1$.\n\nIndeed, let $\\tau = (kl)$.\nEither $k, l$ lie in the same cycle in $\\sigma$, or they lie in different ones.\n\n- If they lie in the same cycle, then $$\\sigma = \\alpha (k a_1 a_2 \\dots a_r l a_s \\dots a_t) \\beta$$ where $\\alpha, \\beta$ are disjoint from the central cycle (and [49g hence commute] with $(kl)$).\nThen $\\sigma (kl) = \\alpha (k a_s \\dots a_t)(l a_1 \\dots a_r) \\beta$, so we have broken one cycle into two.\n- If they lie in different cycles, then $$\\sigma = \\alpha (k a_1 a_2 \\dots a_r)(l b_1 \\dots b_s) \\beta$$ where again $\\alpha, \\beta$ are disjoint from $(kl)$.\nThen $\\sigma (kl) = \\alpha (k b_1 b_2 \\dots b_s l a_1 \\dots a_r) \\beta$, so we have joined two cycles into one.\n\nTherefore $c$ takes even values if there are evenly many transpositions in $\\sigma$, and odd values if there are odd-many transpositions in $\\sigma$.\n\nMore formally, let $\\sigma = \\alpha_1 \\dots \\alpha_a = \\beta_1 \\dots \\beta_b$, where $\\alpha_i, \\beta_j$ are transpositions.\n%%%knows-requisite([modular_arithmetic]):\n(The following paragraph is more succinctly expressed as: "$c(\\sigma) \\equiv n+a \\pmod{2}$ and also $\\equiv n+b \\pmod{2}$, so $a \\equiv b \\pmod{2}$.")\n%%%\nThen $c(\\sigma)$ flips odd-to-even or even-to-odd for each integer $1, 2, \\dots, a$; it also flips odd-to-even or even-to-odd for each integer $1, 2, \\dots, b$.\nTherefore $a$ and $b$ must be of the same [even_odd_parity parity].\n',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'symmetric_group'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '4120',
      parentId: 'symmetric_group',
      childId: 'sign_of_permutation_is_well_defined',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '4121',
      parentId: 'group_homomorphism',
      childId: 'sign_of_permutation_is_well_defined',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14691',
      pageId: 'sign_of_permutation_is_well_defined',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-28 14:14:29',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13546',
      pageId: 'sign_of_permutation_is_well_defined',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newRequiredBy',
      createdAt: '2016-06-17 15:23:26',
      auxPageId: 'alternating_group_generated_by_three_cycles',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13534',
      pageId: 'sign_of_permutation_is_well_defined',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-17 15:11:36',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13500',
      pageId: 'sign_of_permutation_is_well_defined',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequiredBy',
      createdAt: '2016-06-17 13:43:40',
      auxPageId: 'even_signed_permutations_form_a_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13496',
      pageId: 'sign_of_permutation_is_well_defined',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-17 13:42:02',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13489',
      pageId: 'sign_of_permutation_is_well_defined',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-17 13:23:37',
      auxPageId: 'group_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13488',
      pageId: 'sign_of_permutation_is_well_defined',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-17 13:23:26',
      auxPageId: 'symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13487',
      pageId: 'sign_of_permutation_is_well_defined',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-17 13:23:04',
      auxPageId: 'symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}