{
  localUrl: '../page/irrational_number.html',
  arbitalUrl: 'https://arbital.com/p/irrational_number',
  rawJsonUrl: '../raw/54z.json',
  likeableId: '2959',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'irrational_number',
  edit: '2',
  editSummary: '',
  prevEdit: '1',
  currentEdit: '2',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Irrational number',
  clickbait: 'Real numbers that are not rational numbers',
  textLength: '798',
  alias: 'irrational_number',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'JoeZeng',
  editCreatedAt: '2016-07-06 11:44:11',
  pageCreatorId: 'JoeZeng',
  pageCreatedAt: '2016-07-06 03:56:36',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '21',
  text: 'An irrational number is a [-4bc] that is not a [-4zq]. This set is generally denoted using either $\\mathbb{I}$ or $\\overline{\\mathbb{Q}}$, the latter of which represents it as the [set_complement complement] of the rationals within the reals.\n\nIn the [50d Cauchy sequence definition] of real numbers, the irrational numbers are the equivalence classes of Cauchy sequences of rational numbers that do not converge in the rationals. In the [50g Dedekind cut definition], the irrational numbers are the one-sided Dedekind cuts where the set $\\mathbb{Q}^\\ge$ does not have a least element.\n\n## Properties of irrational numbers\n\nIrrational numbers have decimal expansions (and indeed, representations in any base $b$) that do not repeat or terminate.\n\nThe set of irrational numbers is [2w0 uncountable].',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'JoeZeng'
  ],
  childIds: [
    'pi_is_irrational',
    'sqrt_2_is_irrational'
  ],
  parentIds: [
    'math'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'stub_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15648',
      pageId: 'irrational_number',
      userId: 'JoeZeng',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-07-06 11:44:11',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15618',
      pageId: 'irrational_number',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-06 06:49:42',
      auxPageId: 'pi_is_irrational',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15611',
      pageId: 'irrational_number',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-06 06:48:47',
      auxPageId: 'sqrt_2_is_irrational',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15607',
      pageId: 'irrational_number',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-06 06:47:37',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15573',
      pageId: 'irrational_number',
      userId: 'JoeZeng',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-06 03:56:38',
      auxPageId: 'stub_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15572',
      pageId: 'irrational_number',
      userId: 'JoeZeng',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-06 03:56:36',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}