{
  localUrl: '../page/pi_is_irrational.html',
  arbitalUrl: 'https://arbital.com/p/pi_is_irrational',
  rawJsonUrl: '../raw/513.json',
  likeableId: '2925',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'EricBruylant',
    'JaimeSevillaMolina'
  ],
  pageId: 'pi_is_irrational',
  edit: '4',
  editSummary: '',
  prevEdit: '3',
  currentEdit: '4',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Pi is irrational',
  clickbait: 'The number pi is famously not rational, in spite of joking attempts at legislation to fix its value at 3 or 22/7.',
  textLength: '3345',
  alias: 'pi_is_irrational',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-07-21 19:36:18',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-07-03 10:25:33',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '1',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '123',
  text: 'The number [49r $\\pi$] is not [4zq rational].\n\n# Proof\n\nFor any fixed real number $q$, and any [-45h] $n$, let $$A_n = \\frac{q^n}{n!} \\int_0^{\\pi} [x (\\pi - x)]^n \\sin(x) dx$$\nwhere $n!$ is the [-5bv] of $n$, $\\int$ is the [-definite_integral], and $\\sin$ is the [-sin_function].\n\n## Preparatory work\n\nExercise: $A_n = (4n-2) q A_{n-1} - (q \\pi)^2 A_{n-2}$.\n%%hidden(Show solution):\nWe use [-integration_by_parts].\n\n[todo: show this]\n%%\n\nNow, $$A_0 = \\int_0^{\\pi} \\sin(x) dx = 2$$\nso $A_0$ is an integer.\n\nAlso $$A_1 = q \\int_0^{\\pi} x (\\pi-x) \\sin(x) dx$$ which by a simple calculation is $4q$.\n%%hidden(Show calculation):\nExpand the integrand and then integrate by parts repeatedly:\n$$\\frac{A_1}{q} = \\int_0^{\\pi} x (\\pi-x) \\sin(x) dx = \\pi \\int_0^{\\pi} x \\sin(x) dx - \\int_0^{\\pi} x^2 \\sin(x) dx$$\n\nThe first integral term is $$[-x \\cos(x)]_0^{\\pi} + \\int_0^{\\pi} \\cos(x) dx = \\pi$$\n\nThe second integral term is $$[-x^2 \\cos(x)]_{0}^{\\pi} + \\int_0^{\\pi} 2x \\cos(x) dx$$\nwhich is $$\\pi^2 + 2 \\left( [x \\sin(x)]_0^{\\pi} - \\int_0^{\\pi} \\sin(x) dx \\right)$$\nwhich is $$\\pi^2 -4$$\n\nTherefore $$\\frac{A_1}{q} = \\pi^2 - (\\pi^2 - 4) = 4$$\n%%\n\nTherefore, if $q$ and $q \\pi$ are integers, then so is $A_n$ [5fz inductively], because $(4n-2) q A_{n-1}$ is an integer and $(q \\pi)^2 A_{n-2}$ is an integer.\n\nBut also $A_n \\to 0$ as $n \\to \\infty$, because $\\int_0^{\\pi} [x (\\pi-x)]^n \\sin(x) dx$ is in modulus at most $$\\pi \\times \\max_{0 \\leq x \\leq \\pi} [x (\\pi-x)]^n \\sin(x) \\leq \\pi \\times \\max_{0 \\leq x \\leq \\pi} [x (\\pi-x)]^n = \\pi \\times \\left[\\frac{\\pi^2}{4}\\right]^n$$\nand hence $$|A_n| \\leq \\frac{1}{n!} \\left[\\frac{\\pi^2 q}{4}\\right]^n$$\n\nFor $n$ larger than $\\frac{\\pi^2 q}{4}$, this expression is getting smaller with $n$, and moreover it gets smaller faster and faster as $n$ increases; so its limit is $0$.\n%%hidden(Formal treatment):\nWe claim that $\\frac{r^n}{n!} \\to 0$ as $n \\to \\infty$, for any $r > 0$.\n\nIndeed, we have $$\\frac{r^{n+1}/(n+1)!}{r^n/n!} = \\frac{r}{n+1}$$\nwhich, for $n > 2r-1$, is less than $\\frac{1}{2}$.\nTherefore the ratio between successive terms is less than $\\frac{1}{2}$ for sufficiently large $n$, and so the sequence must shrink at least geometrically to $0$.\n%%\n\n## Conclusion\n\nSuppose (for [46z contradiction]) that $\\pi$ is rational; then it is $\\frac{p}{q}$ for some integers $p, q$.\n\nNow $q \\pi$ is an integer (indeed, it is $p$), and $q$ is certainly an integer, so by what we showed above, $A_n$ is an integer for all $n$.\n\nBut $A_n \\to 0$ as $n \\to \\infty$, so there is some $N$ for which $|A_n| < \\frac{1}{2}$ for all $n > N$; hence for all sufficiently large $n$, $A_n$ is $0$.\nWe already know that $A_0 = 2$ and $A_1 = 4q$, neither of which is $0$; so let $N$ be the first integer such that $A_n = 0$ for all $n \\geq N$, and we can already note that $N > 1$.\n\nThen $$0 = A_{N+1} = (4N-2) q A_N - (q \\pi)^2 A_{N-1} = - (q \\pi)^2 A_{N-1}$$\nwhence $q=0$ or $\\pi = 0$ or $A_{N-1} = 0$.\n\nCertainly $q \\not = 0$ because $q$ is the denominator of a fraction; and $\\pi \\not = 0$ by whatever definition of $\\pi$ we care to use.\nBut also $A_{N-1}$ is not $0$ because then $N-1$ would be an integer $m$ such that $A_n = 0$ for all $n \\geq m$, and that contradicts the definition of $N$ as the *least* such integer.\n\nWe have obtained the required contradiction; so it must be the case that $\\pi$ is irrational.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'EricRogstad'
  ],
  childIds: [],
  parentIds: [
    'pi',
    'irrational_number'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'proof_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '4716',
      parentId: 'rational_number',
      childId: 'pi_is_irrational',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-07-03 09:52:22',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '4718',
      parentId: 'math3',
      childId: 'pi_is_irrational',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-07-03 10:27:15',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17248',
      pageId: 'pi_is_irrational',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-07-21 19:36:18',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17240',
      pageId: 'pi_is_irrational',
      userId: 'EricRogstad',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-07-21 17:57:09',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: '[pi_real_number $\\pi$] -> [pi $\\pi$]'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15619',
      pageId: 'pi_is_irrational',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-06 06:49:42',
      auxPageId: 'irrational_number',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15617',
      pageId: 'pi_is_irrational',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteParent',
      createdAt: '2016-07-06 06:49:36',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15615',
      pageId: 'pi_is_irrational',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-06 06:49:35',
      auxPageId: 'pi',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15386',
      pageId: 'pi_is_irrational',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-07-05 08:37:32',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'Minor insertion of a word'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15265',
      pageId: 'pi_is_irrational',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-04 18:04:26',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15172',
      pageId: 'pi_is_irrational',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-07-03 10:27:15',
      auxPageId: 'math3',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15170',
      pageId: 'pi_is_irrational',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-07-03 10:25:35',
      auxPageId: 'rational_number',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15171',
      pageId: 'pi_is_irrational',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-03 10:25:35',
      auxPageId: 'proof_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15169',
      pageId: 'pi_is_irrational',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-03 10:25:33',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}