{ localUrl: '../page/order_relation.html', arbitalUrl: 'https://arbital.com/p/order_relation', rawJsonUrl: '../raw/549.json', likeableId: '2952', likeableType: 'page', myLikeValue: '0', likeCount: '2', dislikeCount: '0', likeScore: '2', individualLikes: [ 'EricBruylant', 'JaimeSevillaMolina' ], pageId: 'order_relation', edit: '9', editSummary: '', prevEdit: '8', currentEdit: '9', wasPublished: 'true', type: 'wiki', title: 'Order relation', clickbait: 'A way of determining which elements of a set come "before" or "after" other elements.', textLength: '2768', alias: 'order_relation', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-07-07 16:32:44', pageCreatorId: 'JoeZeng', pageCreatedAt: '2016-07-05 21:17:15', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '69', text: 'An **order relation** (also called an **order** or **ordering**) is a [3nt binary relation] $\\le$ on a [3jz set] $S$ that can be used to order the elements in that set.\n\nAn order relation satisfies the following properties:\n\n1. For all $a \\in S$, $a \\le a$. (the [reflexive_relation reflexive] property)\n2. For all $a, b \\in S$, if $a \\le b$ and $b \\le a$, then $a = b$. (the [antisymmetric_relation antisymmetric] property)\n3. For all $a, b, c \\in S$, if $a \\le b$ and $b \\le c$, then $a \\le c$. (the [transitive_relation transitive] property)\n\nA set that has an order relation is called a [3rb partially ordered set] (or "poset"), and $\\le$ is its *partial order*.\n\n## Totality of an order\n\nThere is also a fourth property that distinguishes between two different types of orders:\n\n4. For all $a, b \\in S$, either $a \\le b$ or $b \\le a$ or both. (the [total_relation total] property)\n\nThe total property implies the reflexive property, by setting $a = b$.\n\nIf the order relation satisfies the total property, then $S$ is called a [-540], and $\\le$ is its *total order*.\n\n## Well-ordering\n\nA fifth property that extends the idea of a "total order" is that of the [55r well-ordering]:\n\n5. For every subset $X$ of $S$, $X$ has a least element: an element $x$ such that for all $y \\in X$, we have $x \\leq y$.\n\nWell-orderings are very useful: they are the orderings we can perform [mathematical_induction induction] over. (For more on this viewpoint, see the page on [structural_induction].)\n\n# Derived relations\n\nThe order relation immediately affords several other relations.\n\n## Reverse order\n\nWe can define a *reverse order* $\\ge$ as follows: $a \\ge b$ when $b \\le a$. \n\n## Strict order \n\nFrom any poset $(S, \\le)$, we can derive a *strict order* $<$, which disallows equality. For $a, b \\in S$, $a < b$ when $a \\le b$ and $a \\neq b$. This strict order is still antisymmetric and transitive, but it is no longer reflexive.\n\nWe can then also define a reverse strict order $>$ as follows: $a > b$ when $b \\le a$ and $a \\neq b$.\n\n## Incomparability\n\nIn a poset that is not totally ordered, there exist elements $a$ and $b$ where the order relation is undefined. If neither $a \\leq b$ nor $b \\leq a$ then we say that $a$ and $b$ are *incomparable*, and write $a \\parallel b$. \n\n## Cover relation\n\nFrom any poset $(S, \\leq)$, we can derive an underlying *cover relation* $\\prec$, defined such that for $a, b \\in S$, $a \\prec b$ whenever the following two conditions are satisfied:\n\n1. $a < b$.\n2. For all $s \\in S$, $a \\leq s < b$ implies that $a = s$.\n\nSimply put, $a \\prec b$ means that $b$ is the smallest element of $S$ which is strictly greater than $a$.\n$a \\prec b$ is pronounced "$a$ is covered by $b$", or "$b$ covers $a$", and $b$ is said to be a *cover* of $a$.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'JoeZeng', 'PatrickStevens' ], childIds: [], parentIds: [ 'relation_mathematics' ], commentIds: [ '55t' ], questionIds: [], tagIds: [ 'formal_definition_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15992', pageId: 'order_relation', userId: 'PatrickStevens', edit: '9', type: 'newEdit', createdAt: '2016-07-07 16:32:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15991', pageId: 'order_relation', userId: 'PatrickStevens', edit: '8', type: 'newEdit', createdAt: '2016-07-07 16:28:19', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15990', pageId: 'order_relation', userId: 'JoeZeng', edit: '7', type: 'newEdit', createdAt: '2016-07-07 16:26:51', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15989', pageId: 'order_relation', userId: 'JoeZeng', edit: '6', type: 'newEdit', createdAt: '2016-07-07 16:25:45', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '2996', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '15988', pageId: 'order_relation', userId: 'JoeZeng', edit: '5', type: 'newEdit', createdAt: '2016-07-07 16:23:49', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15987', pageId: 'order_relation', userId: 'JoeZeng', edit: '4', type: 'newEdit', createdAt: '2016-07-07 16:05:01', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15843', pageId: 'order_relation', userId: 'JoeZeng', edit: '3', type: 'newEdit', createdAt: '2016-07-06 23:00:55', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15703', pageId: 'order_relation', userId: 'JoeZeng', edit: '2', type: 'newEdit', createdAt: '2016-07-06 15:35:11', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15699', pageId: 'order_relation', userId: 'JoeZeng', edit: '0', type: 'newParent', createdAt: '2016-07-06 15:24:37', auxPageId: 'relation_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15440', pageId: 'order_relation', userId: 'JoeZeng', edit: '0', type: 'newTag', createdAt: '2016-07-05 21:17:46', auxPageId: 'formal_definition_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15438', pageId: 'order_relation', userId: 'JoeZeng', edit: '1', type: 'newEdit', createdAt: '2016-07-05 21:17:15', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }