{
  localUrl: '../page/relation_mathematics.html',
  arbitalUrl: 'https://arbital.com/p/relation_mathematics',
  rawJsonUrl: '../raw/3nt.json',
  likeableId: '2527',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'EricBruylant',
    'BrettHoutz'
  ],
  pageId: 'relation_mathematics',
  edit: '11',
  editSummary: '',
  prevEdit: '10',
  currentEdit: '11',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Relation',
  clickbait: '',
  textLength: '1811',
  alias: 'relation_mathematics',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'DylanHendrickson',
  editCreatedAt: '2016-07-07 17:11:14',
  pageCreatorId: 'KevinClancy',
  pageCreatedAt: '2016-05-17 00:48:51',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '1',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '51',
  text: '%%comment:\nI do not want to be shortened. The motivation for this is that I would prefer that someone has the ability to learn everything they need to know about relations just by reading the popup summary.\n%%\n\n[summary: A **relation** is a [3jz set] of [tuple_mathematics tuples], all of which have the same [tuple_arity arity]. The inclusion of a tuple in a relation indicates that the components of the tuple are related. A set of $n$-tuples is called an $n$*-ary relation*. Sets of pairs are called binary relations, sets of triples are called ternary relations, etc.\n\nExamples of binary relations include the equality relation on natural numbers $\\{ (0,0), (1,1), (2,2), ... \\}$ and the predecessor relation $\\{ (0,1), (1,2), (2,3), ... \\}$. When a symbol is used to denote a specific binary relation ($R$ is commonly used for this purpose),  that symbol can be used with infix notation to denote set membership: $xRy$ means that the pair $(x,y)$ is an element of the set $R$.]\n\nA **relation** is a [3jz set] of [tuple_mathematics tuples], all of which have the same [todo: generalize the function_arity page to include general arity][tuple_arity arity]. The inclusion of a tuple in a relation indicates that the components of the tuple are related. A set of $n$-tuples is called an $n$*-ary relation*. Sets of pairs are called binary relations, sets of triples are called ternary relations, etc.\n\nExamples of binary relations include the equality relation on natural numbers $\\{ (0,0), (1,1), (2,2), ... \\}$ and the predecessor relation $\\{ (0,1), (1,2), (2,3), ... \\}$. When a symbol is used to denote a specific binary relation ($R$ is commonly used for this purpose),  that symbol can be used with infix notation to denote set membership: $xRy$ means that the pair $(x,y)$ is an element of the set $R$.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'KevinClancy',
    'DylanHendrickson',
    'NateSoares',
    'JoeZeng'
  ],
  childIds: [
    'equivalence_relation',
    'order_relation',
    'transitive_relation',
    'reflexive_relation',
    'antisymmetric_relation'
  ],
  parentIds: [
    'math'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'formal_definition_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '3236',
      parentId: 'set_mathematics',
      childId: 'relation_mathematics',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17850',
      pageId: 'relation_mathematics',
      userId: 'KevinClancy',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-31 17:53:22',
      auxPageId: 'antisymmetric_relation',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16806',
      pageId: 'relation_mathematics',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-15 20:17:42',
      auxPageId: 'reflexive_relation',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16804',
      pageId: 'relation_mathematics',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'deleteChild',
      createdAt: '2016-07-15 20:17:23',
      auxPageId: 'reflexive_relation',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16801',
      pageId: 'relation_mathematics',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteUsedAsTag',
      createdAt: '2016-07-15 20:00:17',
      auxPageId: 'reflexive_relation',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16799',
      pageId: 'relation_mathematics',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-15 20:00:16',
      auxPageId: 'reflexive_relation',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16007',
      pageId: 'relation_mathematics',
      userId: 'DylanHendrickson',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-07 17:20:32',
      auxPageId: 'transitive_relation',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16002',
      pageId: 'relation_mathematics',
      userId: 'DylanHendrickson',
      edit: '11',
      type: 'newEdit',
      createdAt: '2016-07-07 17:11:14',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16001',
      pageId: 'relation_mathematics',
      userId: 'DylanHendrickson',
      edit: '10',
      type: 'newEdit',
      createdAt: '2016-07-07 17:10:58',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15698',
      pageId: 'relation_mathematics',
      userId: 'JoeZeng',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-06 15:24:37',
      auxPageId: 'order_relation',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15482',
      pageId: 'relation_mathematics',
      userId: 'KevinClancy',
      edit: '9',
      type: 'newEdit',
      createdAt: '2016-07-05 22:25:30',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15452',
      pageId: 'relation_mathematics',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-05 21:52:51',
      auxPageId: 'equivalence_relation',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15426',
      pageId: 'relation_mathematics',
      userId: 'JoeZeng',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-07-05 20:30:02',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13766',
      pageId: 'relation_mathematics',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newAlias',
      createdAt: '2016-06-17 23:21:21',
      auxPageId: '',
      oldSettingsValue: '3nt',
      newSettingsValue: 'relation_mathematics'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13765',
      pageId: 'relation_mathematics',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-06-17 23:21:14',
      auxPageId: 'formal_definition_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13763',
      pageId: 'relation_mathematics',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-06-17 23:21:08',
      auxPageId: 'definition_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10775',
      pageId: 'relation_mathematics',
      userId: 'KevinClancy',
      edit: '6',
      type: 'newRequiredBy',
      createdAt: '2016-05-21 22:00:13',
      auxPageId: 'poset',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10556',
      pageId: 'relation_mathematics',
      userId: 'NateSoares',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-05-17 06:30:48',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10554',
      pageId: 'relation_mathematics',
      userId: 'KevinClancy',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-05-17 02:33:35',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10553',
      pageId: 'relation_mathematics',
      userId: 'KevinClancy',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-05-17 02:32:49',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10552',
      pageId: 'relation_mathematics',
      userId: 'KevinClancy',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-05-17 02:31:35',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10551',
      pageId: 'relation_mathematics',
      userId: 'KevinClancy',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-05-17 02:29:59',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10531',
      pageId: 'relation_mathematics',
      userId: 'KevinClancy',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-05-17 00:48:51',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10527',
      pageId: 'relation_mathematics',
      userId: 'KevinClancy',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-05-17 00:46:42',
      auxPageId: 'set_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10526',
      pageId: 'relation_mathematics',
      userId: 'KevinClancy',
      edit: '1',
      type: 'newTag',
      createdAt: '2016-05-17 00:46:04',
      auxPageId: 'definition_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '10525',
      pageId: 'relation_mathematics',
      userId: 'KevinClancy',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-05-17 00:45:58',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}