{
  localUrl: '../page/reflexive_relation.html',
  arbitalUrl: 'https://arbital.com/p/reflexive_relation',
  rawJsonUrl: '../raw/5dy.json',
  likeableId: '3073',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '4',
  dislikeCount: '0',
  likeScore: '4',
  individualLikes: [
    'EricBruylant',
    'KevinClancy',
    'MarkChimes',
    'EricRogstad'
  ],
  pageId: 'reflexive_relation',
  edit: '1',
  editSummary: '',
  prevEdit: '0',
  currentEdit: '1',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Reflexive relation',
  clickbait: '',
  textLength: '1175',
  alias: 'reflexive_relation',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'RyanHendrickson',
  editCreatedAt: '2016-07-15 19:48:12',
  pageCreatorId: 'RyanHendrickson',
  pageCreatedAt: '2016-07-15 19:48:12',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '26',
  text: 'A binary [3nt relation] over some set is **reflexive** when every element of that set is related to itself. (In symbols, a relation $R$ over a set $X$ is reflexive if $\\forall a \\in X, aRa$.) For example, the relation $\\leq$ defined over the real numbers is reflexive, because every number is less than or equal to itself.\n\nA relation is **anti-reflexive** when *no* element of the set over which it is defined is related to itself. $<$ is an anti-reflexive relation over the real numbers. Note that a relation doesn't have to be either reflexive or anti-reflexive; if Alice likes herself but Bob doesn't like himself, then the relation "_ likes _" over the set $\\{Alice, Bob\\}$ is neither reflexive nor anti-reflexive.\n\nThe **reflexive closure** of a relation $R$ is the union of $R$ with the [Identity_relation identity relation]; it is the smallest relation that is reflexive and that contains $R$ as a subset. For example, $\\leq$ is the reflexive closure of $<$.\n\nSome other simple properties that can be possessed by binary relations are [Symmetric_relation symmetry] and [573 transitivity].\n\nA reflexive relation that is also transitive is called a [Preorder preorder].',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '3',
  maintainerCount: '3',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'RyanHendrickson'
  ],
  childIds: [],
  parentIds: [
    'relation_mathematics'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16807',
      pageId: 'reflexive_relation',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-15 20:17:42',
      auxPageId: 'relation_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16805',
      pageId: 'reflexive_relation',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'deleteParent',
      createdAt: '2016-07-15 20:17:23',
      auxPageId: 'relation_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16802',
      pageId: 'reflexive_relation',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-07-15 20:00:17',
      auxPageId: 'relation_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3076',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '16800',
      pageId: 'reflexive_relation',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-15 20:00:16',
      auxPageId: 'relation_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16798',
      pageId: 'reflexive_relation',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-15 19:59:23',
      auxPageId: 'relation_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3074',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '16797',
      pageId: 'reflexive_relation',
      userId: 'RyanHendrickson',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-15 19:48:12',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}