{
  localUrl: '../page/prime_number.html',
  arbitalUrl: 'https://arbital.com/p/prime_number',
  rawJsonUrl: '../raw/4mf.json',
  likeableId: '2795',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'EricBruylant',
    'IvanKuzmin'
  ],
  pageId: 'prime_number',
  edit: '5',
  editSummary: '',
  prevEdit: '4',
  currentEdit: '5',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Prime number',
  clickbait: 'The prime numbers are the "building blocks" of the counting numbers.',
  textLength: '2065',
  alias: 'prime_number',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-07-27 20:03:30',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-20 08:46:08',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '1',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '40',
  text: 'A [-45h] $n > 1$ is *prime* if it has no [divisor_number_theory divisors] other than itself and $1$.\nEquivalently, it has the property that if $n \\mid ab$ %%note:That is, $n$ divides the product $ab$%% then $n \\mid a$ or $n \\mid b$.\nConventionally, $1$ is considered to be neither prime nor [composite_number composite] (i.e. non-prime).\n\n# Examples\n\n- The number $2$ is prime, because its divisors are $1$ and $2$; therefore it has no divisors other than itself and $1$.\n- The number $3$ is also prime, as are $5, 7, 11, 13, \\dots$.\n- The number $4$ is not prime; neither are $6, 8, 9, 10, 12, \\dots$.\n\n# Properties\n\n- There are infinitely many primes. ([54r Proof.])\n- Every natural number may be written as a product of primes; moreover, this can only be done in one way (if we count "the same product but with the order swapped" as being the same: for example, $2 \\times 3 = 3 \\times 2$ is just one way of writing $6$). ([fundamental_theorem_of_arithmetic Proof.])\n\n# How to find primes\n\nIf we want to create a list of all the primes below a given number, or the first $n$ primes for some fixed $n$, then an efficient way to do it is the [sieve_of_eratosthenes Sieve of Eratosthenes].\n(There are other sieves available, but Eratosthenes is the simplest.)\n\nThere are many [primality_testing tests] for primality and for compositeness.\n\n# More general concept\n\nThis definition of "prime" is, in a more general [3gq ring-theoretic] setting, known instead as the property of [5m1 irreducibility].\nConfusingly, there is a slightly different notion in this ring-theoretic setting, which goes by the name of "prime"; this notion has [prime_element_ring_theory a separate page on Arbital].\nIn the ring of integers, the two ideas of "prime" and "irreducible" actually coincide, but that is because the integers form a ring with several very convenient properties: in particular, being a [euclidean_domain Euclidean domain], they are a [-principal_ideal_domain] (PID), and [pid_implies_ufd PIDs have unique factorisation].\n\n[todo: add requisite for divisor_number_theory]',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [
    'infinitely_many_primes'
  ],
  parentIds: [
    'natural_number'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'formal_definition_meta_tag',
    'stub_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '4298',
      parentId: 'natural_number',
      childId: 'prime_number',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-20 08:45:49',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17598',
      pageId: 'prime_number',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-07-27 20:03:30',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17594',
      pageId: 'prime_number',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-07-27 18:11:16',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17593',
      pageId: 'prime_number',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-07-27 18:06:27',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15623',
      pageId: 'prime_number',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-06 06:54:18',
      auxPageId: 'infinitely_many_primes',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14151',
      pageId: 'prime_number',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-20 21:27:59',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14081',
      pageId: 'prime_number',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-06-20 08:46:27',
      auxPageId: 'stub_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14080',
      pageId: 'prime_number',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-06-20 08:46:25',
      auxPageId: 'formal_definition_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14078',
      pageId: 'prime_number',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-06-20 08:46:09',
      auxPageId: 'natural_number',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14079',
      pageId: 'prime_number',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-06-20 08:46:09',
      auxPageId: 'natural_number',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14076',
      pageId: 'prime_number',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-20 08:46:08',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}