{ localUrl: '../page/infinitely_many_primes.html', arbitalUrl: 'https://arbital.com/p/infinitely_many_primes', rawJsonUrl: '../raw/54r.json', likeableId: '3396', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'EricBruylant' ], pageId: 'infinitely_many_primes', edit: '4', editSummary: '', prevEdit: '3', currentEdit: '4', wasPublished: 'true', type: 'wiki', title: 'Proof that there are infinitely many primes', clickbait: 'Suppose there were finitely many primes. Then consider the product of all the primes plus 1...', textLength: '2318', alias: 'infinitely_many_primes', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-08-15 13:09:43', pageCreatorId: 'JoeZeng', pageCreatedAt: '2016-07-05 23:59:30', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '24', text: 'The proof that there are infinitely many [4mf prime numbers] is a [-46z].\n\nFirst, we note that there is indeed a prime: namely $2$.\nWe will also state a lemma: that every number greater than $1$ has a prime which divides it.\n(This is the easier half of the [5rh], and the slightly stronger statement that "every number may be written as a product of primes" is proved there.)\n\nNow we can proceed to the meat of the proof.\nSuppose that there were finitely many prime numbers $p_1, p_2, \\ldots, p_n$.\nSince we know $2$ is prime, we know $2$ appears in that list.\n\nThen consider the number $P = p_1p_2\\ldots p_n + 1$ — that is, the product of all primes plus 1.\nSince $2$ appeared in the list, we know $P \\geq 2+1 = 3$, and in particular $P > 1$.\n\nThe number $P$ can't be divided by any of the primes in our list, because it's 1 more than a multiple of them.\nBut there is a prime which divides $P$, because $P>1$; we stated this as a lemma.\nThis is immediately a contradiction: $P$ cannot be divided by any prime, even though all integers greater than $1$ can be divided by a prime.\n\n# Example\n\nThere is a common misconception that $p_1 p_2 \\dots p_n+1$ must be prime if $p_1, \\dots, p_n$ are all primes.\nThis isn't actually the case: if we let $p_1, \\dots, p_6$ be the first six primes $2,3,5,7,11,13$, then you can check by hand that $p_1 \\dots p_6 + 1 = 30031$; but $30031 = 59 \\times 509$.\n(These are all somewhat ad-hoc; there is no particular reason I knew that taking the first six primes would give me a composite number at the end.)\nHowever, we *have* discovered a new prime this way (in fact, two new primes!): namely $59$ and $509$.\n\nIn general, this is a terrible way to discover new primes.\nThe proof tells us that there must be some new prime dividing $30031$, without telling us anything about what those primes are, or even if there is more than one of them (that is, it doesn't tell us whether $30031$ is prime or composite).\nWithout knowing in advance that $30031$ is equal to $59 \\times 509$, it is in general very difficult to *discover* those two prime factors.\nIn fact, it's an open problem whether or not prime factorisation is "easy" in the specific technical sense of there being a polynomial-time algorithm to do it, though most people believe that prime factorisation is "hard" in this sense.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '2', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens', 'JoeZeng' ], childIds: [], parentIds: [ 'prime_number' ], commentIds: [ '5sm' ], questionIds: [], tagIds: [ 'proof_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18739', pageId: 'infinitely_many_primes', userId: 'PatrickStevens', edit: '4', type: 'newEdit', createdAt: '2016-08-15 13:09:43', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18738', pageId: 'infinitely_many_primes', userId: 'PatrickStevens', edit: '3', type: 'newEdit', createdAt: '2016-08-15 12:57:14', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15626', pageId: 'infinitely_many_primes', userId: 'EricBruylant', edit: '0', type: 'deleteParent', createdAt: '2016-07-06 06:54:19', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15624', pageId: 'infinitely_many_primes', userId: 'EricBruylant', edit: '0', type: 'newParent', createdAt: '2016-07-06 06:54:18', auxPageId: 'prime_number', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15622', pageId: 'infinitely_many_primes', userId: 'EricBruylant', edit: '0', type: 'newParent', createdAt: '2016-07-06 06:54:00', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15620', pageId: 'infinitely_many_primes', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-07-06 06:53:37', auxPageId: 'proof_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15531', pageId: 'infinitely_many_primes', userId: 'JoeZeng', edit: '1', type: 'newEdit', createdAt: '2016-07-05 23:59:30', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: { moreWords: { likeableId: '3354', likeableType: 'contentRequest', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '36', pageId: 'infinitely_many_primes', requestType: 'moreWords', createdAt: '2016-08-06 18:30:41' } } }