{
  localUrl: '../page/infinitely_many_primes.html',
  arbitalUrl: 'https://arbital.com/p/infinitely_many_primes',
  rawJsonUrl: '../raw/54r.json',
  likeableId: '3396',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'infinitely_many_primes',
  edit: '4',
  editSummary: '',
  prevEdit: '3',
  currentEdit: '4',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Proof that there are infinitely many primes',
  clickbait: 'Suppose there were finitely many primes. Then consider the product of all the primes plus 1...',
  textLength: '2318',
  alias: 'infinitely_many_primes',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-08-15 13:09:43',
  pageCreatorId: 'JoeZeng',
  pageCreatedAt: '2016-07-05 23:59:30',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '24',
  text: 'The proof that there are infinitely many [4mf prime numbers] is a [-46z].\n\nFirst, we note that there is indeed a prime: namely $2$.\nWe will also state a lemma: that every number greater than $1$ has a prime which divides it.\n(This is the easier half of the [5rh], and the slightly stronger statement that "every number may be written as a product of primes" is proved there.)\n\nNow we can proceed to the meat of the proof.\nSuppose that there were finitely many prime numbers $p_1, p_2, \\ldots, p_n$.\nSince we know $2$ is prime, we know $2$ appears in that list.\n\nThen consider the number $P = p_1p_2\\ldots p_n + 1$ — that is, the product of all primes plus 1.\nSince $2$ appeared in the list, we know $P \\geq 2+1 = 3$, and in particular $P > 1$.\n\nThe number $P$ can't be divided by any of the primes in our list, because it's 1 more than a multiple of them.\nBut there is a prime which divides $P$, because $P>1$; we stated this as a lemma.\nThis is immediately a contradiction: $P$ cannot be divided by any prime, even though all integers greater than $1$ can be divided by a prime.\n\n# Example\n\nThere is a common misconception that $p_1 p_2 \\dots p_n+1$ must be prime if $p_1, \\dots, p_n$ are all primes.\nThis isn't actually the case: if we let $p_1, \\dots, p_6$ be the first six primes $2,3,5,7,11,13$, then you can check by hand that $p_1 \\dots p_6 + 1 = 30031$; but $30031 = 59 \\times 509$.\n(These are all somewhat ad-hoc; there is no particular reason I knew that taking the first six primes would give me a composite number at the end.)\nHowever, we *have* discovered a new prime this way (in fact, two new primes!): namely $59$ and $509$.\n\nIn general, this is a terrible way to discover new primes.\nThe proof tells us that there must be some new prime dividing $30031$, without telling us anything about what those primes are, or even if there is more than one of them (that is, it doesn't tell us whether $30031$ is prime or composite).\nWithout knowing in advance that $30031$ is equal to $59 \\times 509$, it is in general very difficult to *discover* those two prime factors.\nIn fact, it's an open problem whether or not prime factorisation is "easy" in the specific technical sense of there being a polynomial-time algorithm to do it, though most people believe that prime factorisation is "hard" in this sense.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'JoeZeng'
  ],
  childIds: [],
  parentIds: [
    'prime_number'
  ],
  commentIds: [
    '5sm'
  ],
  questionIds: [],
  tagIds: [
    'proof_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18739',
      pageId: 'infinitely_many_primes',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-08-15 13:09:43',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18738',
      pageId: 'infinitely_many_primes',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-08-15 12:57:14',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15626',
      pageId: 'infinitely_many_primes',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteParent',
      createdAt: '2016-07-06 06:54:19',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15624',
      pageId: 'infinitely_many_primes',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-06 06:54:18',
      auxPageId: 'prime_number',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15622',
      pageId: 'infinitely_many_primes',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-06 06:54:00',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15620',
      pageId: 'infinitely_many_primes',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-06 06:53:37',
      auxPageId: 'proof_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15531',
      pageId: 'infinitely_many_primes',
      userId: 'JoeZeng',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-05 23:59:30',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {
    moreWords: {
      likeableId: '3354',
      likeableType: 'contentRequest',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '36',
      pageId: 'infinitely_many_primes',
      requestType: 'moreWords',
      createdAt: '2016-08-06 18:30:41'
    }
  }
}