{
  localUrl: '../page/real_number.html',
  arbitalUrl: 'https://arbital.com/p/real_number',
  rawJsonUrl: '../raw/4bc.json',
  likeableId: '2685',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'real_number',
  edit: '15',
  editSummary: '',
  prevEdit: '14',
  currentEdit: '15',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Real number',
  clickbait: '',
  textLength: '3588',
  alias: 'real_number',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'JoeZeng',
  editCreatedAt: '2016-08-16 22:23:25',
  pageCreatorId: 'MichaelCohen',
  pageCreatedAt: '2016-06-14 21:50:45',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '2',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '190',
  text: 'A **real number** is any number that can be used to represent a physical quantity.\n\nIntuitively, real numbers are any number that can be found between two [48l integers], such as $0,$ $1,$ $-1,$ $\\frac{3}{2},$ $\\frac{-7}{2},$ [49r $\\pi,$] [e $e$], $100 \\cdot \\sqrt{2},$ and so on. The set of real numbers is written $\\mathbb R.$ You can think of $\\mathbb R$ as [4zq $\\mathbb Q$] extended to include the [54z irrational numbers] like $\\pi$ and $e$ which can be found between rational numbers but which cannot be completely written out in [-4sl].\n\n## Definitions of the real numbers\n\nThe most commonly used definitions of the real numbers are constructions as extensions of the [4zq rational numbers], which involve either [53b Cauchy sequences] or [dedekind_cut Dedekind cuts].\n\n### Cauchy sequences\n\nBroadly speaking, a Cauchy sequence is a sequence where as the sequence goes on, all the elements past that point get closer and closer together. In the real numbers, every Cauchy sequence [convergence_analysis converges] to a real number. However, in the set of rational numbers, not all Cauchy sequences converge to a rational number.\nIn the set of rationals, a Cauchy sequence which does not converge to a rational number cannot really be said to "converge" at all: the set of rationals is "missing some of the points" that would be required to make every Cauchy sequence converge.\n\nFor example, the sequence of fractions of consecutive Fibonacci numbers $1/1, 2/1, 3/2, 5/3, 8/5, \\ldots$ gets closer and closer to $\\frac{1 + \\sqrt{5}}{2}$, but cannot be said to converge to that number because it is not in the set of rational numbers.\n\nFor each of these non-convergent Cauchy sequences, we define a new irrational number to "fill in the gap", and for the Cauchy sequences that do converge, we define a real number equal to that rational number.\n\n### Dedekind cuts\n\nA Dedekind cut of a [-540] is a [-partition] of that set into two sets so that every element in the first set is [ less than] every element in the second set, and the second set has no smallest element. The latter restriction requires that the set also be a [ perfect set] (have no [isolated_point isolated points]), in the sense used in topology.\n\nIn the real numbers, such a partition will always have the first set having a greatest element, which is known as the least-upper-bound property. However, in the rational numbers, we might come across a partition where the first set does not have such an element.\n\nFor example, define a Dedekind cut $(A, B)$ of the rational numbers such that $B = \\{x \\in \\mathbb{Q} \\ | \\ x > 0 \\wedge x^2 > 2\\}$ and $A$ is the complement of $B$. In plainer language, $B$ consists of all the numbers greater than $\\sqrt{2}$, but because $\\sqrt{2}$ doesn't exist in the space of rational numbers, we can't use that to formulate our definition. Obviously every element of $A$ is less than every element of $B$, but $A$ has no greatest element either, because we can create a sequence of numbers in $A$ that gets bigger and bigger (as it approaches $\\sqrt{2}$) but never stops at a maximum value.\n\nFor each of these "strict cuts" where neither set has a "boundary element", we define a new irrational number to "fill in the gap", just like with the Cauchy sequences. For the Dedekind cuts where one of the sets does have a least or greatest element, we define a real number equal to that rational number.\n\nThis definition has the advantage that each real number is represented by a unique Dedekind cut, unlike the Cauchy sequences where multiple sequences can converge to the same number.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'MichaelCohen',
    'JoeZeng',
    'EricBruylant',
    'KevinClancy',
    'EricRogstad',
    'NateSoares',
    'AlexeiAndreev',
    'MYass',
    'PatrickStevens'
  ],
  childIds: [
    'real_number_as_cauchy_sequence',
    'real_number_as_dedekind_cut',
    'real_numbers_uncountable'
  ],
  parentIds: [
    'math'
  ],
  commentIds: [
    '4bp',
    '4bv',
    '4h5',
    '503',
    '5dd'
  ],
  questionIds: [],
  tagIds: [
    'start_meta_tag',
    'needs_summary_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [
    {
      id: '61',
      pageId: 'real_number',
      lensId: 'real_number_as_cauchy_sequence',
      lensIndex: '0',
      lensName: 'Cauchy sequence definition',
      lensSubtitle: '',
      createdBy: '267',
      createdAt: '2016-07-02 14:09:58',
      updatedBy: '267',
      updatedAt: '2016-07-02 14:10:11'
    },
    {
      id: '65',
      pageId: 'real_number',
      lensId: 'real_number_as_dedekind_cut',
      lensIndex: '1',
      lensName: 'DEDEKIND CUT DEFINITION',
      lensSubtitle: '',
      createdBy: '4tg',
      createdAt: '2016-07-05 19:34:06',
      updatedBy: '4tg',
      updatedAt: '2016-07-05 19:34:20'
    }
  ],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20211',
      pageId: 'real_number',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-10-21 11:05:26',
      auxPageId: 'real_numbers_uncountable',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18768',
      pageId: 'real_number',
      userId: 'JoeZeng',
      edit: '15',
      type: 'newEdit',
      createdAt: '2016-08-16 22:23:25',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3352',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '18494',
      pageId: 'real_number',
      userId: 'PatrickStevens',
      edit: '14',
      type: 'newEdit',
      createdAt: '2016-08-06 12:40:03',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18476',
      pageId: 'real_number',
      userId: 'MYass',
      edit: '13',
      type: 'newEdit',
      createdAt: '2016-08-06 03:09:51',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'Before, these sentences looked contradictory until I read the next paragraph(which indicated that they do converge, but not to a rational). That is not good.'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17729',
      pageId: 'real_number',
      userId: 'AlexeiAndreev',
      edit: '12',
      type: 'newEdit',
      createdAt: '2016-07-29 18:15:02',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3090',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '2',
      dislikeCount: '0',
      likeScore: '2',
      individualLikes: [],
      id: '16922',
      pageId: 'real_number',
      userId: 'KevinClancy',
      edit: '11',
      type: 'newEdit',
      createdAt: '2016-07-16 20:17:17',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'Previous edit explanation: The definition was circular because infinite summations are defined in terms of limits, and limits of rationals are defined in terms of real numbers. '
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16883',
      pageId: 'real_number',
      userId: 'KevinClancy',
      edit: '10',
      type: 'newEdit',
      createdAt: '2016-07-16 17:41:44',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16733',
      pageId: 'real_number',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-14 23:59:52',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15899',
      pageId: 'real_number',
      userId: 'JoeZeng',
      edit: '9',
      type: 'newEdit',
      createdAt: '2016-07-07 02:01:22',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15409',
      pageId: 'real_number',
      userId: 'JoeZeng',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-05 19:34:04',
      auxPageId: 'real_number_as_dedekind_cut',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15234',
      pageId: 'real_number',
      userId: 'NateSoares',
      edit: '8',
      type: 'newEdit',
      createdAt: '2016-07-04 07:07:24',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15233',
      pageId: 'real_number',
      userId: 'NateSoares',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-04 07:07:16',
      auxPageId: 'start_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15116',
      pageId: 'real_number',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteRequirement',
      createdAt: '2016-07-02 14:10:31',
      auxPageId: 'math3',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15114',
      pageId: 'real_number',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-07-02 14:10:18',
      auxPageId: 'math3',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15112',
      pageId: 'real_number',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-02 14:09:56',
      auxPageId: 'real_number_as_cauchy_sequence',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '2920',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '15108',
      pageId: 'real_number',
      userId: 'JoeZeng',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-07-02 02:24:55',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13453',
      pageId: 'real_number',
      userId: 'MichaelCohen',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-06-17 07:49:16',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12892',
      pageId: 'real_number',
      userId: 'EricRogstad',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-06-15 00:03:48',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12862',
      pageId: 'real_number',
      userId: 'EricBruylant',
      edit: '4',
      type: 'newParent',
      createdAt: '2016-06-14 22:42:59',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12860',
      pageId: 'real_number',
      userId: 'EricBruylant',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-06-14 22:42:47',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12810',
      pageId: 'real_number',
      userId: 'EricBruylant',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-14 22:15:15',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12799',
      pageId: 'real_number',
      userId: 'MichaelCohen',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-14 21:51:10',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12797',
      pageId: 'real_number',
      userId: 'MichaelCohen',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-14 21:50:46',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}