{
  localUrl: '../page/real_numbers_uncountable.html',
  arbitalUrl: 'https://arbital.com/p/real_numbers_uncountable',
  rawJsonUrl: '../raw/6fk.json',
  likeableId: '3637',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'EricBruylant'
  ],
  pageId: 'real_numbers_uncountable',
  edit: '2',
  editSummary: '',
  prevEdit: '1',
  currentEdit: '2',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Real numbers are uncountable',
  clickbait: 'The real numbers are uncountable.',
  textLength: '1622',
  alias: 'real_numbers_uncountable',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'EricBruylant',
  editCreatedAt: '2016-10-21 11:16:58',
  pageCreatorId: 'EricBruylant',
  pageCreatedAt: '2016-10-21 11:05:05',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '45',
  text: 'We present a variant of Cantor's diagonalization argument to prove the  [4bc real numbers] are [2w0 uncountable].  This [constructive_proof constructively proves] that there exist [uncountable_set uncountable sets] %%note:  Since the real numbers are an example of one.%%.\n\nWe use the decimal representation of the real numbers.  An overline ( $\\bar{\\phantom{9}}$ ) is used to mean that the digit(s) under it are repeated forever.  Note that $a.bcd\\cdots z\\overline{9} = a.bcd\\cdots (z+1)\\overline{0}$ (if $z < 9$; otherwise, we need to continue carrying the one); $\\sum_{i=k}^\\infty 10^{-k} \\cdot 9 = 1 \\cdot 10^{-k + 1} + \\sum_{i=k}^\\infty 10^{-k} \\cdot 0$.  Furthermore, these are the only equivalences between decimal representations; there are no other real numbers with multiple representations, and these real numbers have only these two decimal representations.\n\n**Theorem** The real numbers are uncountable.\n\n**Proof** Suppose, for [46z contradiction], that the real numbers are [-6f8 countable]; suppose that $f: \\mathbb Z^+ \\twoheadrightarrow \\mathbb R$ is a surjection.  Let $r_n$ denote the $n^\\text{th}$ decimal digit of $r$, so that the fractional part of $r$ is $r_1r_2r_3r_4r_5\\ldots$  Then define a real number $r'$ with $0 \\le r' < 1$ so that $r'_n$ is 5 if $(f(n))_n \\ne 5$, and 6 if $(f(n))_n = 5$.  Then there can be no $n$ such that $r' = f(n)$ since $r'_n \\ne (f(n))_n$.  Thus $f$ is not surjective, contradicting our assumption, and $\\mathbb R$ is uncountable. $\\square$\n\n\nNote that choosing 5 and 6 as our allowable digits for $r'$ side-steps the issue that $0.\\overline{9} = 1.\\overline{0}$.  %%',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: [
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0'
  ],
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {
    Summary: 'We present a variant of Cantor's diagonalization argument to prove the  [4bc real numbers] are [2w0 uncountable].  This [constructive_proof constructively proves] that there exist [uncountable_set uncountable sets] %%note:  Since the real numbers are an example of one.%%.'
  },
  creatorIds: [
    'EricBruylant'
  ],
  childIds: [],
  parentIds: [
    'uncountable',
    'real_number'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'c_class_meta_tag',
    'proof_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '6600',
      parentId: 'uncountable',
      childId: 'real_numbers_uncountable',
      type: 'requirement',
      creatorId: 'EricBruylant',
      createdAt: '2016-10-21 11:03:54',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    },
    {
      id: '6601',
      parentId: 'real_number',
      childId: 'real_numbers_uncountable',
      type: 'requirement',
      creatorId: 'EricBruylant',
      createdAt: '2016-10-21 11:04:10',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    }
  ],
  subjects: [
    {
      id: '6605',
      parentId: 'uncountable',
      childId: 'real_numbers_uncountable',
      type: 'subject',
      creatorId: 'EricBruylant',
      createdAt: '2016-10-21 11:10:35',
      level: '3',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  lenses: [],
  lensParentId: 'uncountable',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20219',
      pageId: 'real_numbers_uncountable',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-10-21 11:17:38',
      auxPageId: 'c_class_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20218',
      pageId: 'real_numbers_uncountable',
      userId: 'EricBruylant',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-10-21 11:16:58',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20217',
      pageId: 'real_numbers_uncountable',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newSubject',
      createdAt: '2016-10-21 11:10:36',
      auxPageId: 'uncountable',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20214',
      pageId: 'real_numbers_uncountable',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-10-21 11:05:35',
      auxPageId: 'uncountable',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20212',
      pageId: 'real_numbers_uncountable',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-10-21 11:05:26',
      auxPageId: 'real_number',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20208',
      pageId: 'real_numbers_uncountable',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-10-21 11:05:07',
      auxPageId: 'uncountable',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20209',
      pageId: 'real_numbers_uncountable',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-10-21 11:05:07',
      auxPageId: 'real_number',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20210',
      pageId: 'real_numbers_uncountable',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-10-21 11:05:07',
      auxPageId: 'proof_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20207',
      pageId: 'real_numbers_uncountable',
      userId: 'EricBruylant',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-10-21 11:05:05',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}